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Fig. 1: Cross-sectional schematic of the BioTac sensor.

I. INTRODUCTION

Achieving human-level performance in dexterous grasping
tasks will likely require richer tactile sensing than is currently
available [1]. Recently, biomimetic tactile sensors, designed
to provide more humanlike capabilities, have been developed.
These new sensors provide an opportunity to significantly
improve the robustness of robotic manipulation. In order to
take full advantage of the information available from such
sensors, new estimation techniques have to be developed.
Since these sensors provide different sensory modalities,
one should also focus on how they can be combined in
various manipulation tasks. This paper presents two esti-
mation techniques that use different sensory modalities of
biomimetic tactile sensors to detect and classify slip events
during grasping. In particular, we present a slip detector,
which is able to detect slips more than 30ms before it
was detected by an IMU accelerometer. In addition, we
demonstrate a slip classifier that is able to classify the type
of slip based on different skin distortions with over 80%
accuracy before an IMU detects that the object is moving.

II. APPROACH

A. Biomimetic Tactile Sensor - BioTac

We have developed a haptically-enabled robot with the
Barrett arm/hand system whose three fingers are equipped
with novel biomimetic tactile sensors (BioTacs) (Fig. 1).
Each BioTac consists of a rigid core housing an array of
19 impedance-sensing electrodes surrounded by an elastic
skin. The BioTac consists of three complementary sensory
modalities: force, pressure and temperature. When the skin
is in contact with an object, the liquid is displaced, resulting
in distributed impedance changes in the electrode array
on the surface of the rigid core. The impedance of each
electrode tends to be dominated by the thickness of the liquid
between the electrode and the immediately overlying skin.
Slip-related micro-vibrations in the skin propagate through
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Fig. 2: Different objects used for the experiments.

the fluid and are detected as AC signals by the hydro-acoustic
pressure sensor. Temperature and heat flow are transduced by
a thermistor near the surface of the rigid core.

B. Slip Detection

In order to detect a slip event, two different estima-
tion techniques are used: a force-derivative method and
a pressure-based method. In the force-derivative method,
the tangential force sensed by the BioTac increases as the
robot lifts an object while the normal force decreases. The
ratio between normal and tangential forces thus decreases,
indicating a transition to kinetic friction and hence slip. The
negative derivative of the normal force is used to detect slip
in this manner.

Slip is also detected using the pressure sensor. Because the
BioTac skin contains a pattern of human-like fingerprints,
it is possible to detect slip-related micro-vibrations on the
BioTac skin when rubbing against textured surfaces. A band-
pass filter (60-700Hz) is first employed to filter the pressure
signal. Second, the absolute value of the signal is calculated
because we are interested in the absolute vibration. Due
to differences between pressure sensor sampling frequency
(2.2kHz) and the robot’s onboard controller (300Hz), the
slip detection algorithm considers a 10ms time window (3
cycles of the onboard controller). This guarantees 22 samples
of pressure readings in the time window. Slip is detected if
11 out of 22 pressure sensor values exceed the threshold.
The slip threshold is found empirically to be twice as large
as the baseline vibration caused by the motors of the robot.

C. Slip Classification

We classify slip into two categories: linear and rotational.
During linear slip, the object maintains its orientation with
respect to the local end-effector frame but gradually slides
out of the robot’s fingers. During rotational slip, the center
of mass of the object tends to rotate about an axis normal
to the grasp surface, although the point of contact with
the robots fingers might stay the same. The importance of
these classes has been shown by a previous study [2], where
the authors demonstrated that rotational slip requires much



stronger finger force response than linear slip in order to
robustly keep the object grasped within the hand.

To be able to classify linear and rotational slip, we train
a neural network to learn the mapping from the time-
varying BioTac electrode values to the slip class. To construct
the features, we take a certain time interval of electrode
values and combine all values inside the window into one
long feature vector, e.g. 100 consecutive timestamps of 19-
dimensional electrode values result in a 1900-dimensional
input vector. The architecture of the NN consists of input,
output and one hidden layer with 50 neurons.

III. EVALUATION AND DISCUSSION

A. Slip Detection

We tested our slip detection algorithms on two objects
with distinctive textures: a plastic jar with a smooth surface
and a wooden block with a rough texture (see Fig. 2). In
both cases, we attached an IMU to the objects to detect the
moment when the object starts moving. In order to induce
slips, the robot lifts an object with insufficient force while
the experimenter supports it; the experimenter then releases
the object, causing it to slip. The collected data set consists
of 20 slip events per object.

An example run of the slip detection experiment is de-
picted in Fig. 3. By using the force-derivative and the
pressure-based methods, we were able to detect slip before
it was noticed by the IMU. It is also worth noting that the
pressure-based method can detect slip sooner than the force-
derivative method. This may be caused by the fact that in
the very initial stage of slip (incipient slip) the microscopical
slip effects are not yet visible at the electrodes. Nonetheless,
the slight movement of the fingerprints is picked up by the
high-frequency pressure signal.

Statistical analysis of the experiments shows that the
robot is able to detect slip using the force-derivative method
5.7ms ± 4.5ms for the plastic jar and 7.8ms ± 3.6ms for
the wooden block before the movement is detected by the
IMU. The pressure-based method detects slip even sooner:
32.8ms± 4.2ms for the plastic jar and 35.7ms± 6.0ms for
the wooden block before the motion is detected by the IMU.

B. Slip Classification

We used four objects to evaluate slip classification: a
wooden block, an oil bottle, a bottle of cleaning wipes and
a jar with added weights (see Fig. 2). For training, the robot
grasped an object either approximately at the center of mass
of the object or at the edge of the object. These two grasping
methods caused either linear (if grasped at the center of mass)
or rotational slip of the object while it was being picked up.
In order to detect slip, an IMU was attached to the object.
For each object, over 80 grasps were performed (40 for the
linear slip and 40 for the rotational slip). The data set was
divided into the 80% training and 20% test sets.

Results of the experiments are depicted in Fig. 4. For the
input of the NN, points from 100 consecutive timestamps
were selected, resulting in a 1900-dimensional input vector.
Each point in Fig. 4 corresponds to the point when we
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Fig. 3: An example run of the slip detection experiment.
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Fig. 4: Linear / rotational slip classification accuracy.

classify slip given 100 previous values. The moment when
slip was detected by the IMU is depicted by a vertical line.
As we approach the slip, the classification accuracy improves
as expected. However, it is worth noting that using the NN
approach, the robot is able to achieve approximately 80%
classification rate, before the IMU is even able to notice that
the slip event started. During a manipulation task this would
allow more time for the robot to respond appropriately.

IV. CONCLUSIONS AND FUTURE WORK

This work demonstrated slip detection and classification
using multiple sensory modalities on a biomimetic tactile
sensor. Our method was able to detect slips more than 30ms
before it was detected by an IMU accelerometer and achieve
80% slip classification success rate before the IMU detection.
This indicates that the robot should be able to adapt finger
forces at a very early stage of the slip and prevent the
object from moving. In future work, we plan to fuse the
estimation techniques presented in this paper to be able to
take full advantage of the sensor and also employ other
sensory modalities of the BioTac sensor.

REFERENCES

[1] R.S. Dahiya, M. Gori, G. Metta, and G. Sandini. Better
manipulation with human inspired tactile sensing. In RSS 2009
workshop on Understanding the Human Hand for Advancing
Robotic Manipulation. RSS, pages 1–2, 2009.
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