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I. INTRODUCTION 
There are two main categories of object slip: linear and 

rotational. During linear slip, the object maintains its orientation 
with respect to the local end-effector frame but gradually slides 
out of the robot fingers. During rotational slip, the center of mass 
of the object tends to rotate about an axis normal to the grasp 
surface, although the point of contact with the robot’s fingers 
might stay the same. It is important to discriminate between 
these two kinds of slip to react and control finger forces 
accordingly. Previous study has shown rotational slip requires 
much stronger finger force response than linear slip in order to 
robustly keep the object grasped within the hand [1]. 

We have developed a haptically-enabled robot with the 
Barrett arm/hand system whose three fingers are equipped with 
novel biomimetic tactile sensors (BioTacs) (Fig. 1). Each 
BioTac consists of a rigid core housing an array of 19 
impedance-sensing electrodes surrounded by an elastic skin.  

 
Fig. 1 Cross-sectional schematic of the BioTac sensor 

When an object is grasped by a pinch grip (Fig. 2), the skin 
distortions, measured by the electrodes on the BioTacs, should 
be very different prior to linear slips or rotational slips. Thus, the 
likelihood of a given slip will be a particular type given the prior 
skin distortions between the skin and the object. This paper 
demonstrates a slip classifier that is able to classify the types of 
slip based on different skin distortions with over 80% accuracy 
before an IMU detects that the object is moving.  

 
Fig. 2: Different objects used for the experiments. 

II. APPROACH 
To be able to classify linear and rotational slip, we train a 

neural network to learn the mapping from the time-varying 
BioTac electrode values of the tangential vs. torsional distortions 
of the skin to the corresponding slip class. To construct the 
features, we take a certain time interval of electrode values and 
combine all values inside the window into one long feature 
vector, i.e. 100 consecutive timestamps of 19-dimensional 
electrode values result in a 1900-dimensional input vector. The 
architecture of the NN consists of input, output and one hidden 
layer with 50 neurons. The hidden layer has a sigmoid transfer 
function. The softmax activation function is used in the output 
neurons. It produces the probabilities of the signal sequence 
belonging to one of the slip classes. 
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In order to avoid overfitting of the training data we employ 
the early stopping technique during training. The network is 
trained with the Scaled Conjugate Gradient back-propagation 
algorithm.  

III. EVALUATION AND DISCUSSION 
To evaluate the NN approach for the classification of two 

kinds of slip events, four objects were chosen: a wooden block, 
oil bottle, wipes box and a jar with added weights (see Fig. 2). 
For training, the robot grasped an object either approximately at 
the center of mass of the object or at the edge of the object. 
These two grasping methods caused either linear (if grasped at 
the center of mass) or rotational slip of the object while it was 
being picked up. In order to detect slip, an IMU was attached to 
the object. For each object, over 80 grasps were performed (40 
for the linear slip and 40 for the rotational slip). The data set was 
randomly shuffled and divided into the 80% training and 20% 
test sets. Similar to the force estimation, 20% of the training set 
was used for the validation during the NN training. 

Results of the experiments are depicted in Fig. 3. For the 
input of the NN, points from 100 consecutive timestamps were 
selected, resulting in a 1900-dimensional input vector. Each 
point in Fig. 3 corresponds to the last timestamp that was taken 
into account as the NN input, i.e. the point when we classify slip 
given 100 previous values. The moment when slip was detected 
by the IMU is depicted by a vertical line. As more data are 
gathered during an actual slip, classification accuracy improves 
as expected. However, it is worth noting that using the NN 
approach, the robot is able to achieve approximately 80% 
classification rate, before the IMU is even able to notice that the 
slip event started. Our algorithm accurately detects the slip class 
even before significant object motion is detected (using an 
IMU), allowing more time for the robot to respond 
appropriately. 

  
Fig. 3: Linear/rotational slip classification accuracy dependent on the time 

of prediction. Red line shows the point when slip is detected based on the IMU 
readings. 

IV. CONCLUSION AND FUTURE WORK 
Slip classification into linear or rotational slip was observed 

to be important for robust object handling due to different 
requirements for finger force response. We achieved 80% 
classification success rate using a neural network approach 
before the slip event was detected by an IMU accelerometer. 
This indicates that the robot should be able to change finger 
forces at a very early stage of the slip and therefore, prevent the 
moving of the object inside the hand. In future work, this 
classifier along with tri-axial contact forces and incipient slip 
extracted from BioTac will be employed and evaluated in a grip 
force controller.  
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