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Humans have been shown to be good at using active touch to perceive subtle differences
in compliance. They tend to use highly stereotypical exploratory strategies, such as
applying normal force to a surface. We developed similar exploratory and perceptual
algorithms for a mechatronic robotic system (Barrett arm/hand system) equipped with
liquid-filled, biomimetic tactile sensors (BioTac® from SynTouch LLC). The distribution
of force on the fingertip was measured by the electrical resistance of the conductive
liquid trapped between the elastomeric skin and a cluster of four electrodes on the
flat fingertip surface of the rigid core of the BioTac. These signals provided closed-loop
control of exploratory movements, while the distribution of skin deformations, measured
by more lateral electrodes and by the hydraulic pressure, were used to estimate material
properties of objects. With this control algorithm, the robot plus tactile sensor was able to
discriminate the relative compliance of various rubber samples.

Keywords: compliance discrimination, exploratory movements, haptic perception, Barrett robot, biomimetic
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INTRODUCTION
Humans interact with compliant objects to judge ripeness of
fruits, the air pressure in bicycle tires or the quality of a mattress.
Expert bakers judge the quality of flour by evaluating physical
firmness or toughness of dough (Katz, 1937). During breast or
prostate examinations, healthcare practitioners use their hands
to locate and characterize a hard lump in soft tissue. Unlike
visual features such as size and shape, compliance can only be
appreciated via active or passive touch.

It is essential for social and personal assistive robots and pros-
thetic hands (a form of telerobot) to be able to perceive material
properties such as compliance to handle household objects. The
ability to interact with fragile objects is necessary particularly if
such systems are designed to interact physically with humans.
Compliance perception could also be beneficial to robot-assisted,
minimally invasive surgeries by detecting a hidden tumor in
an organ or a calcified artery in heart tissue (Yamamoto et al.,
2009). A variety of tactile sensors have been designed to solve the
tactile sensing problems in robotic manipulation and medicine
(Webster, 1988), but their practical use is limited by the hos-
tile environments to which robotic and prosthetic hands are
typically exposed. The BioTac® is a robust and easy to repair
tactile sensor that is capable of detecting point of contact, nor-
mal/tangential contact forces, and object spatial properties with
impedance sensing electrodes (Wettels et al., 2008a; Wettels and
Loeb, 2011), micro-vibrations associated with slip and textures
through a hydro-acoustic pressure sensor (Fishel et al., 2008), and
thermal fluxes with a thermistor (Lin et al., 2009).

Previous studies of compliance discrimination by robots used
a combination of tactile and force sensors. (Takamuku et al.,
2007) built a tendon-driven robot hand covered with strain
gauges and a piezoelectric polyvinylidene fluoride (PVDF) skin.

By performing squeezing and tapping over objects with different
material properties, the strain gauges in this tactile sensor enabled
the discrimination of hardness of different materials. Campos
and Bajcsy (1991) proposed a robotic haptic system architec-
ture that performed haptic exploratory procedures based on
Lederman and Klatzky (1987) psychophysical studies of human
performance. Hardness of objects were determined by measuring
the force required to produce a given displacement. Both studies
focused on measuring contact force and indentation displace-
ment to discriminate object hardness or compliance. An adaptive
force/position control algorithm was tested on an industrial robot
to maintain force along the normal direction to the surface while
moving in tangential directions on a rubber ball with 10 cm radius
and 5000 N/m stiffness (Villani et al., 2000). In this paper, we
present the results of using information about distributed defor-
mation of the elastic skin of our tactile senor to discriminate
compliance, a strategy that appears to be similar to that used by
humans. This is made possible by using sensory feedback from
a cluster of impedance sensing electrodes in the BioTac that are
responsive to distributed forces. With these electrodes we were
able to maintain a consistent orientation while applying normal
forces to the surface of the object.

Subjective hardness/softness discrimination has been studied
in psychophysical studies. Srinivasan and LaMotte (1995) showed
that humans are efficient at discriminating subtle differences in
softness under both active touch and passive touch with only
cutaneous sensation but they are unable to discriminate even
large differences during local cutaneous anesthesia. This suggests
that tactile sensory information independent of proprioceptive
information is necessary for discriminating softness of objects
with deformable surface. Their studies also show that random-
izing maximum force levels and indentation velocity in passive
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touch does not seem to affect sensitivity. This indicates that com-
pliance discrimination can be done without fine control of these
movements. Instead, we propose that spatial distribution of skin
could be the cue for compliance discrimination. Peine (1999)
developed a taxonomy that classifies the surgeons’ finger motion
during palpation procedures. They found that surgeons apply
various normal force with no lateral motion to sense the stiff-
ness of body tissues. Lateral motion after applying heavy pressure
was found to enhance the ability to detect hard lumps in soft
tissue.

To acquire information about object properties, humans tend
to perform stereotyped exploratory movements Lederman and
Klatzky, 1987. The exploratory movements to detect hardness are
pressing and squeezing (Lederman and Klatzky, 1990). We have
developed a haptic robot platform with a Barrett hand-wrist-
arm system whose three fingers have been equipped with novel
BioTac® multimodal tactile sensors. In this paper, we present
algorithms for the control of human-like exploratory movements
for pressing on and characterizing objects with various hardnesses
(durometer values). When robot gradually presses its fingertip
into rubber samples with compliant surfaces, it uses the sen-
sory feedback from the tactile sensor (BioTac) to control both
normal and tangential contact forces and to adjust the orien-
tation of its fingertip to account for the potentially unknown
orientation of contact surfaces and internal discontinuities such
as buried lumps. The distributed deformation sensed by the
BioTac can be used to estimate the compliance of the contact
surface.

MATERIALS AND METHODS
We present data from initial experiments with flat objects made
from materials with varying hardness to demonstrate the simulta-
neous use of multimodal tactile sensor data to control exploratory
movements and to interpret their results.

EXPERIMENT SETUP
Overview of the biomimetic tactile sensor (BioTac)
The BioTac (Figure 1A) consists of a rigid core housing all elec-
tronics and sensory components surrounded by an elastic skin
that is inflated with an incompressible and conductive fluid.
When the skin contacts an object, this fluid is displaced, resulting
in distributed impedance changes in the electrode array on the
surface of the rigid core. The impedance of each electrode tends
to be dominated by the thickness of the fluid layer between the
electrode and the immediately overlying skin. The skin has a pat-
tern of asperities on its inner layer that gradually compress with
increasing normal force, preventing object saturation (Wettels
et al., 2008b). A MEMS pressure transducer measures hydro-
static pressure, which increases depending on the distribution of
deformation in the elastic skin.

Similar to the human fingertip, the BioTac sensors are sen-
sitive to tangential as well as normal forces. When performing
a compliance movement it is desirable to apply forces normally
and symmetrically to the object. For the haptic robot, this means
servoing its end-effectors in the pitch and roll directions to ori-
ent a flat portion of the core of the BioTac that defines a local
coordinate frame (Figure 1B). The sensory feedback is provided
by four adjacent electrodes on this flat region whose impedance
depends on compression of the skin against the electrode surface.
These four adjacent electrodes are labeled electrode 7, 8, 9, and
10 on the electrode array map (Figure 1C). The pair of electrodes
along the x-direction (8 and 9) and the pair of electrodes along the
y-direction (7 and 10) are used for servocontrol of the pitch and
roll, respectively, of the robotic fingertip. When the tactile sen-
sor detects differences between these pairs of electrodes the error
is corrected by adjusting the pitch or roll of the fingertip with
the robot. The total contact force during indentation is estimated
from the sum of impedance changes on all four electrodes. When
pressing into a compliant object, the object has a tendency to wrap

FIGURE 1 | (A) Schematic diagram of the BioTac biomimetic tactile sensor.
Sensing modalities include measurement of normal and shear forces
detected by changes in impedance between electrodes as the conductive
fluid pathways deform, slip-related microvibrations that propagate through
the skin and fluid and are detected by the hydro-acoustic pressure sensor,

and thermal properties as detected by a thermistor capable of detecting heat
flow between the preheated core and contacted objects; (B) Orientations on
BioTAC: the finger local coordinate frame has its origin in the center of the
two electrode pairs and is coplanar with the flat surface of the core;
(C) Electrode array map.

Frontiers in Neurorobotics www.frontiersin.org July 2012 | Volume 6 | Article 7 | 2

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Su et al. Compliance discrimination with tactile feedback

around the finger and the resulting forces can be measured by
lateral electrodes not on the flat surface (such as 17). Comparing
this change with the relative magnitude of impedance changes
in the central four electrodes can yield substantial information
about the compliance of the object. Additional information from
the fluid pressure can also be used to characterize these changes.
The sensor signals that provide information about compliance
depend also on the curvature of the surface of the object, which
must be estimated simultaneously from the complete temporal
profiles of all sensor signals (Wettels and Loeb, 2011).

Testing materials
The levels of compliance for objects used in this experiment are
classified by their durometers. The durometer is measured by the
indentation depth into a material created by a given force on a
standardized indenter with specific diameter. There are several
scales of durometer depending on the diameter and configuration
of the indenter, the spring forces applied on the tested materials.
The samples in this experiment were all one inch thick and made
from Neoprene rubber (50 Shore A) and polyurethane rubber
(30 Shore A, 50 Shore 00, and 30 Shore OO), going from hard to
soft.

Experimental procedure
The experiments were conducted on the seven DOF Barrett WAM
robot arm and four DOF Barrett Hand BH-280 equipped with the
BioTac. In each trial, the robot pressed one digit against a rub-
ber sample in an unknown orientation and position. The robot
controller had no prior knowledge of the orientation of the sur-
face; instead it used tactile sensory feedback to identify a contact
surface and adjust its finger orientation while pressing onto the
compliant surface (Figure 2A).

ROBOT EXPLORATORY MOVEMENTS
The exploratory movement can be divided into three phases:
(1) Reach to an object surface by controlling position in Cartesian
coordinate system with smooth path movement. The desired
position is either provided a priori or estimated by machine
vision. (2) Maintain normal contact and orientation with the
center of the fingertip by maintaining a symmetrical distribu-
tion of force on a cluster of tactile sensors. (3) Controlling the
exploratory movement, which consists of pressing the finger-
tip gradually into the contact surface while maintaining normal
orientation of the fingertip in the pitch and roll directions.

Online orientation control using tactile sensor feedback
In order to maintain the orientation of the flat portion of the
sensor while gradually pressing into a compliant surface, the
desired orientation trajectory is generated by feedback signals
on the two pairs of electrodes. These differential signals are
used to incrementally increase or decrease current pitch and
roll angles (βc , γc) with very small increments (�β, �γ) in the
finger local coordinates, respectively. From the new local roll-
pitch angles (β, γ) in the finger local coordinate frame (shown
in Figure 1B), the corresponding finger local rotation matrix
Rlocal can be derived and translated into rotation matrix in the
robot base coordinates B

F Rfinger by premultiplying local rotation

matrix with matrix B
F R which is the forward kinematic from fin-

gertip to robot base. Instead of using roll-pitch-yaw angles for
orientation control directly, a unit quaternion representation of
orientation [η, ε1, ε2, ε3] is derived from the new rotation matrix,
because of its singularities-free property (Yuan, 1988). This online
orientation generation algorithm is shown in a pseudo-code,
(Table 1).

FIGURE 2 | (A) Barrett with BioTac pressing a compliant surface; (B) Force/position control diagram.
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Table 1 | Algorithm for online orientation generation using tactile

sensor feedback.

Algorithm online orientation generation using tactile sensor feedback(
E8, E9, E7, E10

)
IF E8 > E9 THEN

β = βc + �β

ELSEIF E8 < E9 THEN

β = βc − �β

ENDIF

IF E7 > E10 THEN

γ = γc + �γ

ELSEIF E7 < E10 THEN

γ = γc − �γ

ENDIF

Rlocal = RotationMatrix (β, γ)

B
F Rfinger = B

F R ∗ Rlocal

[η, ε1, ε2, ε3] = Quaternions(B
F Rfinger)

The scalar η part and the vector part (ε1, ε2, ε3) in a unit
quaternion representation fulfill η2 + ε2

1 + ε2
2 + ε2

3 = 1.
A velocity-based orientation control with quaternion feedback

is written below:
ωr = ωd − Koeo (1)

where ωd is the desired angular velocities, Ko is diagonal gain
matrix and eo is the orientation error which is formulated using
the unit quaternion (Yuan, 1988) as:

eo = δε = ηdε − ηεd + [εd × ε] (2)

where [εd×] =
⎡
⎣ 0 −ε3d ε2d

ε3d 0 −ε1d

−ε2d ε1d 0

⎤
⎦ and [η, ε1, ε2, ε3] is

the current orientation and [η, ε1d, ε2d, ε3d] is the desired
orientation.

Robot position control
The desired positions and orientation generated by the online
trajectory generation using tactile sensory feedback is achieved
by a velocity-based operational space controller together with an
inverse dynamic law and PD feedback error compensation in joint
space (Nakanishi et al., 2008). Inverse dynamics control enables
low PD feedback gains for compliant control while ensuring high
tracking performances. The control law is written as:

τarm, p = Mq̈d + h + Kp
(

qd − q
) + Kd

(
q̇d − q̇

)
(3)

where τarm, p is computed vector of torques to track desired joint
angles qd with measured current joint angles q, M is rigid-body
inertia matrix of the arm, q̇d is the vector of desired joint velocity
shown as:

q̇d = J+ (ẋd + Kx (xd − x)) + Kpost(I − J+J)(qpost − q) (4)

where x and xd are the measured and desired finger position
and orientation, h is the vector of Coriolis, centrifugal, and

gravitational forces, Kp, Kd, Kx, and Kpost are diagonal gain
matrices. J is the end-effector Jacobian, J+ denotes the pseudo-
inverse of Jacobian and qpost is the vector of default posture opti-
mized in the nullspace of the end-effector motion. The desired
joint acceleration q̈d and desired joint position qd are obtained
by numerical differentiation and integration of the desired
velocity q̇d.

Robot force control
Because the robot will press its end-effector onto compliant sur-
faces, external contact forces need to be taken into account. The
external contact forces are obtained from the three force vectors
on the BioTac extracted from impedance changes. They are used
to compute torques in the joint space to account for the external
contact forces by premultiplying them with Jacobian transpose,
shown in Equation 5. The tracking of desired contact forces is
achieved with a PI controller (Pastor et al., 2011)

τarm, f = −JT(Farm_des − Farm) + KI

t∫

t−�t

(Farm_des − Farm)dt

(5)

where Farm_des is desired forces at the end-effector, Farm is the
measured forces interpreted from BioTac, KI is a diagonal posi-
tive definite gain matrix and �t is the time-window during which
the force error is integrated. The integral controller will compen-
sate for steady-state errors during contact. An overview of the
presented control architecture is shown in Figure 2B.

NORMAL AND TANGENTIAL FORCE EXTRACTION
During contact with an object, external forces deform the skin
and fluid path around the impedance sensing electrodes. This
deformation results in a distributed pattern of impedance changes
on the electrodes. Previous studies have shown that both normal
and tangential forces can be characterized from the impedance
changes on the electrodes using machine learning techniques
(Wettels et al., 2009; Wettels and Loeb, 2011). Here we present a
simpler and more robust analytical algorithm to estimate normal
and tangential forces.

The BioTac contains an array of 19 impedance sensing elec-
trodes distributed over the surface of the core, which has a coordi-
nate frame aligned with its long axis (Figure 3). Each impedance
sensing electrode was determined to have the highest sensitivity to
forces applied normally to its surface. The normal vectors to each
of these electrodes in 3-axis coordinate space can be weighted
with the change in impedance of these electrodes to determine an
estimate of tri-axial force. We calculate the x, y and z force vectors
from these electrodes with the following equation:

⎡
⎣ Fx

Fy

Fz

⎤
⎦ =

⎡
⎣ Sx 0 0

0 Sy 0
0 0 Sz

⎤
⎦ ×

⎡
⎣ N1, x · · · N19, x

N1, y · · · N19, y

N1, z · · · N19, z

⎤
⎦

×
⎛
⎝

⎡
⎣ E1

· · ·
E19

⎤
⎦ −

⎡
⎣ E1, rest

· · ·
E19, rest

⎤
⎦

⎞
⎠
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FIGURE 3 | Coordinate frame of BioTAC: each impedance sensing electrode has a specific orientation in the BioTac coordinate frame.

where [Fx, Fy, Fz] is the three dimensional force vectors on the
BioTac, [E1 · · · E19] and [E1, rest · · · E19, rest] are the measured
impedance changes and resting impedance values on the BioTac,⎡
⎣ N1, x · · · N19, x

N1, y · · · N19, y

N1, z · · · N19, z

⎤
⎦ is a matrix in which each column is calcu-

lated normal vector for each impedance sensing electrode surface
from the geometry of the rigid core, the Sx, Sy and Sz are scal-
ing values for x-y-z three dimensional vectors to transform these
arbitrary units into engineering units (N).

RESULTS
FORCE EXTRACTION
The scaling factor for each of the three dimensional estimated
force vectors from the BioTac were calibrated on a 6-axis
force plate (HE6x6-16, ATMI). We found that using the above-
mentioned normal/tangential force calibration method was com-
putationally efficient and achieved a low root-mean-squared
(rms) error that exceeded performance of the neural network
and machine learning techniques described in (Wettels et al.,
2009; Wettels and Loeb, 2011). Figure 4 shows the actual forces
(blue) measured from force plate and the predicted force vectors
(red) extracted from BioTac by manually pressing and sliding the
BioTac on the force plate. While pressing and sliding the BioTac,
the flat portion of the BioTac was kept parallel with the surface
of the force plate, similar to the orientation goal of the servocon-
troller for the exploratory poking movements. The rms errors for
these sample movements were less than 10% of the applied forces
in each axis.

PRESSING WITH ORIENTATION UNCERTAINTY
Typical behavior of the system poking a surface with unknown
orientation is illustrated in Figure 5. The top two plots show the
impedances of the pairs of electrodes along x and y direction (E8
vs. E9, E7 vs. E10) on the flat portion of the core of the BioTac,
which is the desired center of contact. The differential signals
between those two pairs of electrodes are also displayed in the two
middle plots in Figure 5. After the initial contact (around 0.5–1 s),

FIGURE 4 | Force measured on force plate (blue) and measured from

the BioTac (red) for pokes with various tangential components.

the robot gradually pressed the BioTac into the compliant sur-
face. A small asymmetry in the x-direction pair triggered the small
correction to the roll angle that occurred at about 2–2.5 s and a
larger correction at 4.5–5 s, shown in the bottom left plot. A larger
asymmetry in the y-direction pair triggered a large pitch angle
correction at 4–6 s, shown in the bottom right plot. The correc-
tion to pitch angle was relatively slow because it involved most of
the proximal joints of the Barrett arm and it actually resulted in
the second correction to the roll angle.

While the robot performed a pressing behavior, its contact
force on the compliant surface was controlled by using tangential
and normal force feedback extracted from the impedance elec-
trode array on the BioTac. Figure 6 shows that the robot pressed
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FIGURE 5 | Typical BioTac impedance sensor feedback on the point of contact and robot orientation behavior obtained from pressing on a compliant

surface.

FIGURE 6 | Typical BioTac tangential force (X force) and normal force

(Z force) feedback obtained from pushing on a compliant surface.

10 N on the compliant surface and kept its lateral tangential force
(X Force) close to zero. The axial tangential force of 4 N is what
would be expected given the 30◦ tilt of the flat portion of the fin-
gertip with respect to the long axis of the BioTac. Stretch between
the BioTac elastic skin and the compliant rubber sample caused by
two rolling movements (around 2–2.5 s and 4.5–5 s in Figure 5)
created a positive tangential force on the sensor, but the force con-
troller gradually decreased the tangential force to close to zero by
the end of the movements shown in Figure 6.

COMPLIANCE DISCRIMINATION
Force and displacement
Previous experiments showed that force and indentation dis-
placement can be used in compliance discrimination when

actively palpating with a tool (LaMotte, 2000). Thus, the ratio
between force and indentation displacement can also provide
information for the perception of compliance, especially for com-
pliant objects covered with non-deformable surfaces, such as
piano keys. During our experiment, the robot is controlled to
apply 10 N in the normal direction onto five objects, consist-
ing of an aluminum plate and four progressively softer rubber
samples with durometer Shore 50A, Shore 30A, Shore 50OO,
and Shore 30OO. Shore 50A is as hard as a pencil eraser and
shore 30OO is a little bit softer than a racquet ball. When the
robot was actively pressing the BioTac onto five objects with
various hardnesses, normal forces and indentation displacement
were measured from BioTac and robot joint encoders, respec-
tively, as shown in Figures 7 and 8. The initial rates of rise of
force were similar for all materials, but it took the robot longer
to reach 10 N on soft materials 50OO and 30OO because it
needed to constantly adjust its fingertip orientation to keep its
fingertip orthogonal to the surface of soft materials. In Figure 8,
we observe that the softer materials have more indentation
displacement than the harder materials. The indentation dis-
placement was measured by the position sensors in the robot
actuators. It reflects the sum of indentation of the skin of the
BioTac plus indentation of the object being probed plus stretch-
ing of the fine stainless-steel cables that link the motors to the
joints. Figure 9 shows that indentation displacement trajecto-
ries were similar for all materials up to about 6 mm and 1 N,
which were due to displacement of the elastic skin on the BioTac
and the initial stretching on the finger joints, which explain a
nearly linear relationship between force and displacement. From
6 mm to 12 mm, indentation displacement trajectories diverged
as a result of the deformation of rubber samples with differ-
ent compliance properties and stretching of cables in the robot.
At about 15 mm and 10 N, they reconverged because they were
then dominated by the stretching of the cables in the robot
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FIGURE 7 | Measured normal force from BioTac: five objects with five

different hardness are tested with Barrett robot equipped with BioTac.

FIGURE 8 | Measured indentation displacement from Barrett joint

encoder.

wrist subjected to large external forces from the compressed
samples.

Deformation
In light of the complex combination of factors that contributes
to apparent indentation displacement of the fingertip, it would
be desirable to use temporal variations of average pressure and
spatio-temporal variations of distributed skin deformation, as
proposed for human discrimination of hardness by Srinivasan
and LaMotte (1995). Both types of tactile information are avail-
able from the BioTac. The MEMS pressure transducer measures
the average pressure of the fluid inside the space between the
elastic skin and rigid core. The spatio-temporal variations of dis-
tributed deformation are provided by the impedance electrode
array, especially from lateral electrodes adjacent to the central four
electrodes used for controlling the applied force.

When the BioTac was pressed against hard materials (e.g., the
aluminum plate and shore A 50 and shore A 30 rubber samples),

FIGURE 9 | Force vs. indentation displacement.

FIGURE 10 | Measured average pressure from MEMS pressure

transducer on BioTac: the rate of average pressure and saturation

pressure are used to discriminate object compliance.

fluid pressure plateaued or actually declined after normal force
reached 2.87 N (around 2 s in Figure 10). This saturation is
caused by the rigid object pushing the elastic skin against the
rigid core on BioTac. The first part of the increasing fluid pres-
sure reflects the compliance of the BioTac skin and fluid pressure,
which grows nonlinearly after the skin contacts the core. The
curves diverge before that occurs if and when the object compli-
ance exceeds the BioTac compliance. As shown in Figure 9 (1–2 s),
harder objects created a higher rate of average pressure changes
in the BioTac. When BioTac pressed objects with softer surface,
the soft surface not only pushed the elastic skin against the rigid
core more gradually, but also progressively enveloped the side of
the BioTac fingertip. This created higher saturation pressures for
softer surfaces (around 2–3 s in Figure 10).
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FIGURE 11 | Typical BioTac lateral impedance electrode feedback

from pressing on different compliant surfaces.

The tendency of soft surfaces to envelop the fingertip as they
are deformed can be seen also in the impedances of more lateral
electrodes such as #17 (Figure 11). The BioTac actually measures
the current admitted into the electrode from a test pulse applied
to various reference electrodes distributed in the fingertip, so a
decrease in measured voltage from an initial value reflects an
increase in electrode impedance. For the lateral electrode #17, the
impedance initially increased similarly for all materials as increas-
ing force was applied at the fingertip and the skin deformed, but
the curves diverged as the more compliant materials deformed
and enveloped the skin further from the centroid of contact. The
reorientation movement that the robot made to correct pitch to
maintain normal force (4.5–5 s in Figure 5) resulted in the tran-
sients in lateral electrode impedance at that time (Figure 11),
which were particularly pronounced for the hard materials. After
the robot corrected its orientation and reached its maximum
contact force, the resting voltage on the lateral electrode reflected
the compliance of the object.

DISCUSSION
The tactile sensors available in the BioTac have properties sim-
ilar to those in human fingertips and can be used to measure
compliance of objects, but only if there is accurate control of the
exploratory movement. Those same sensors can be used to con-
trol the exploratory movements, using tactile feedback control
that may also be similar to what humans use when deciding how
to palpate an unknown object. The preliminary results presented
here are a first step in designing algorithms that can enable robots
to produce the range of exploratory movements and the percepts
that humans achieve thereby.

In this paper, the BioTac was controlled to explore flat com-
pliant objects. Compliant objects that have curved surfaces
or inhomogeneities in material properties will generate differ-
ent responses in the sensors, whose interpretation may require
additional exploratory movements. The tactile-based control of
exploratory movements presented here should enable systematic
exploration of such unknown objects regardless of their location
or orientation with respect to the robot hand.

Systematic datasets need to be generated by poking the BioTac
into objects with various curvatures and various compliances
to develop a more complete perceptual algorithm. In previous
studies, the impedance sensing electrodes of the BioTac could
be used to make coarse determinations of radius of curva-
ture of rigid objects (Wettels and Loeb, 2011). Humans tend
to follow the contour of objects to perceive their precise shapes
(Lederman and Klatzky, 1990). Palpation of hard objects buried
in soft tissues probably reflects a combination of tactile-driven
movements to determine the orientation of hard surfaces and
kinesthesia to keep track of the location and size of those sur-
faces (Peine, 1999). In the future, we will combine pressing and
contour-following exploratory movements to facilitate the per-
ception of both compliance and shape of objects. Eventually,
tactile information from exploratory movements must be
fused with machine vision to permit location, characterization,
identification, and dexterous manipulation of objects in the
environment.
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